
Semi-Global Matching
on Compute Unified Device

Architecture (CUDA)

Report for BTech 451

by

HaoYu Gan

Supervisor: T.N. Chan and Professor Reinhard Klette

Tamaki Innovation Campus
Department of Computer Science

The University of Auckland
New Zealand
October 2012

Abstract

Compute unified device architecture (CUDA) is a parallel computing architec-
ture developed by Nvidia for graphics processing. CUDA is the computing engine
in NVIDIA graphics processing units (GPUs) that is accessible to software develop-
ers through variants of industry standard programming languages.

The GPU, as a specialized processor, addresses the demands of real-time high-
resolution 3D graphics compute-intensive tasks. As of 2012, GPUs have evolved
into highly parallel multi-core systems allowing very efficient manipulation of large
blocks of data. This design is more effective than general-purpose CPUs for algo-
rithms where processing of large blocks of data is done in parallel.

The project is divided into two parts. The first part is researching on CUDA
and benchmarking on certain GPU cards from NVIDIA by using COTS (commercial
off the shelf) applications, gathering all the results and analysis the performance in
order to gain a fully knowledge of CUDA.

The second part continues testing without COTS, but also implementing semi-
global matching (SGM), at first on a standard PC and then by employing CUDA
as the computing tool. Semi-global matching is a very popular method in stereo
analysis and thus a good candidate to be discussed for CUDA implementation.

Keywords: CUDA, GPU, CPU, Semi-Global Matching

ii

Acknowledgments

I would like to thank everyone involved in this project – I thank T.N. Chan and
Prof. Reinhard Klette for project supervision, Dr. S. Manoharan for his advice, and
Ralf Haeusler for introducing me to semi-global matching.

Hao Yu, Gan
University of Auckland

October 24, 2012

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 3
1.1 The Project . 3
1.2 Project Goal . 3
1.3 Company Information . 4

2 Research 5
2.1 CPU serial vs CUDA parallel . 5
2.2 Tesla C2075 . 7
2.3 Quadro 2000 . 8
2.4 Requirements and Set-up . 9

2.4.1 Configuration of the Test System Model 9
2.4.2 Benchmarking Applications . 9

3 Benchmarking 11
3.1 SPECviewperf 11 . 11
3.2 Cadalyst c2012 Auto-CAD . 14
3.3 PPBM5 . 17

4 SGM 27
4.1 Review . 27
4.2 Semi-global Matching . 27

4.2.1 Correspondence Problem . 28
4.2.2 Aggregation of Pixelwise Matching Costs 30

v

Contents 1

4.3 GPU Implementation of SGM . 31
4.3.1 CUDA Programming Model 31
4.3.2 Heterogeneous Programming 33

4.4 Results . 37
4.4.1 Matching Accuracy . 37
4.4.2 Performance Evaluation . 39

5 Knowledge Gained 41
5.1 Achievements . 41

5.1.1 Project Goal . 41
5.1.2 CUDA Language . 41
5.1.3 Presentation and Report Skills 41
5.1.4 Organisation and Time Management Skills 42
5.1.5 Working Experience . 42
5.1.6 Planning Solutions . 42

6 Conclusion and Future work 43
6.1 Summary . 43
6.2 Conclusion . 44
6.3 Future Work . 45

6.3.1 Disparity Refinement . 45
6.3.2 CUDA Optimizations . 45
6.3.3 Optimize SGM on Multiple Paths 46
6.3.4 More Stereo Vision Algorithms 47

Bibliography 50

Chapter 1

Introduction

This is 4th year final project for student who majoring in Bachelor of Technology
(IT) degree. The project carries weight of two semester University courses, which it
is Btech451 Part A and Part B for semester 1 and semester 2 respectively.

1.1 The Project

This project is an appraisal of a computing environment based on NVIDIA ARM
and Intel for COTS and research applications. We will benchmark COTS (commer-
cial off the shelf) applications including a few that have been optimized and certi-
fied for NVIDIA CUDA (Quadro and Tesla). Testing based on Quadro 2000 graphics
card and Tesla C2075 companion card, also included a new technology called Max-
imus which combines Quadro and Tesla products. As NVIDIA likes to reiterate to
their customers its not a new product, it’s a new technology – a new way to use
NVIDIAs existing Quadro and Tesla products together. Theres no new hardware in-
volved, just new features in NVIDIA drivers and new hooks exposed to application
developers.

1.2 Project Goal

Gain a good understanding of how CUDA Computing works, and how does semi-
global matching [5] employs CUDA as the computing tool (in Semester 2). To un-
derstand today’s industry emphasis, in both commercial and academically ways,
also hoping to gain more knowledges about Hardware’s design and architectures,
not only just Software.

Semi-global matching is one way to do stereo matching, and, for example, belief
propagation [2] is another option. Stereo matchers are compared on [11] for their
performance.

4 1. Introduction

Figure 1.1: The Compucon New Zealand

1.3 Company Information

This project is sponsored by the company Compucon New Zealand as shown in
Figure 1.1.

Compucon NZ is part of an International Computer manufacturing group of
companies founded in 1989 in Sydney.

The NZ operation is registered as Modern Technology NZ Ltd and has estab-
lished a reputation for technical excellence based on sound engineering and other
knowledge based practices. All manufacturing processes are certified by Telarc ISO
9002 quality standards at our Albany assembly plant in Auckland NZ.

The Compucon team contributes to the success of customers through their knowl-
edge, excellence, commitment and supply of computing platforms and solutions
meeting or exceeding customer expectations.

Compucon PC’s are manufactured to users requirements while meeting the lat-
est industry open systems standard. Consistency of components and prototype test-
ing ensure seamless inter-operability with other systems.

The Compucon New Zealand:
http://www.compucon.co.nz/

http://www.compucon.co.nz/

Chapter 2

Research

Before it starts, some researches on CUDA are necessary, any topics related to CUDA
are encouraged for further studying. For this project, i will need to set up a com-
puter for benchmarking, so hardware knowledge such as motherboard, CPU, GPU,
Memory RAM and Hard disk driver will be part of the area that require further
study.

2.1 CPU serial vs CUDA parallel

CPU serial:

CPU serial Computing refers of a computer system that carries out the instruc-
tions of a computer program, to perform the basic arithmetical, logical, and in-
put/output operations of the system by using central processing unit. It simply
means that most of the thing is done by CPU alone.

CUDA parallel Computing:

CUDA is a parallel computing platform and programming model invented by
NVIDIA. It enables dramatic increases in computing performance by harnessing the
power of the graphics processing unit (GPU). Computing is evolving from ”central
processing” on the CPU to ”co-processing” on the CPU and GPU. To enable this
new computing paradigm, NVIDIA invented the CUDA parallel computing archi-
tecture that is now shipping in GeForce, Quadro, and Tesla products, representing a
significant installed base for application developers. (NVIDIA website)

With the development of the graphics card, the GPU is more powerful, somehow
it has gone beyond the general-purpose CPU. If such a powerful chip is only for
processing graphics, then it is too wasted, so NVidia launched CUDA that enabled
graphics card can be used for purposes other than the image calculation.

GPU works as following:

6 2. Research

Figure 2.1: This diagram shows how an application that normally runs in the CPU
of a PC is ported over to the GPU.

A software program is made up of application codes. The 1st step is to partition
some sections of the code of a repeating nature to run on the GPU and other sec-
tions to remain on the CPU. Use C, C++ or other supported languages with special
keywords. The sections of the code allocated to the GPU must be highly computing
intensive and they tend to be the core algorithm and thus the critical parts of the ap-
plication. A minor effort of code porting will result in significant performance gains.
At the center of this parallel computing model is CUDA (Compute United Device
Architecture) which is NVIDIAs parallel computing hardware and programming
model.

So in general words, processing on CUDA is that GPU provides support for CPU.
CUDA parallel computing: To be parallel run using CPU + GPU
Example of CUDA processing flow:

1. Copy data from main memory to GPU memory

2. CPU instructs the process to GPU

3. GPU execute parallel in each core

4. Copy the result from GPU memory to main memory

2.2. Tesla C2075 7

2.2 Tesla C2075

Figure 2.2: NVIDIA Tesla C2075

The NVIDIA Tesla C2075 companion processor [14] is built for GPU comput-
ing. It features 448 application-acceleration cores per board, dramatically increasing
performance compared to a traditional workstation. By adding a Tesla companion
processor, engineers, designers, and content creation professionals can add over one
Teraflop of computing potential to their workstation.

So Tesla is not like Quadro, it is compute processing intensive, Tesla is still a GPU
and the cores are being used exclusively for general computing purposes to offload
work from the CPU while the Quadro half of the equation handles graphical tasks.

Tesla C2075:
http://www.nvidia.com/object/workstation-solutions-tesla.html#

http://www.nvidia.com/object/workstation-solutions-tesla.html#

8 2. Research

2.3 Quadro 2000

Figure 2.3: NVIDIA Quadro 2000

The Quadro 2000 is based on Nvidias Fermi architecture [12, 13], and is equipped
with 192 CUDA parallel processing cores. Accompanying these is 1GB of GDDR5
RAM running over a 128-bit memory interface, and offering 41.6GB of memory
bandwidth. The Quadro is compute and graphics intensive, since the algorithm/equation
handles graphical tasks.

Quadro 2000:
http://www.nvidia.com/object/product-quadro-2000-us.html

http://www.nvidia.com/object/product-quadro-2000-us.html

2.4. Requirements and Set-up 9

2.4 Requirements and Set-up

2.4.1 Configuration of the Test System Model

Our test system model’s information for this project is shown below:

Motherboard: Asus P9X79
http:

//www.asus.com/Motherboards/Intel_Socket_2011/P9X79/#overview

CPU: Intel i7-3930K LGA2011 http://ark.intel.com/products/63697/
Intel-Core-i7-3930K-Processor-12M-Cache-up-to-3_80-GHz

Memory RAM: 8GB 16GB DDR3-1333 Quad Channel

Graphics Card: Quadro 2000, Tesla C2075, or Maximus(Q+T)

HDD: Single SATA with two different models

1. WESTERN DIGITAL WD5000AAKX Caviar Blue 500GB 7200 RPM 16MB
cache SATA 6.0Gb/s 3.5” internal hard drive

2. Seagate Barracuda 7200.7 ST3120827AS 120GB 7200 RPM 8MB Cache SATA
1.5Gb/s

For a comparison purpose, we will compare the results from previous results
done by Joseph, Joseph used to be one of the staff that working for the Compucon
Company. He have done similar benchmarks for Quadro 2000 by using various of
different system configuration.

2.4.2 Benchmarking Applications

This first half of the project is mainly on benchmarking. Hence we will use some of
the benchmarking tools that are optimized and certified for CUDA graphics cards.
Most of them are COTS(commercial off the shelf) which mean they are not open
sources and pay to use. The following are the applications that we will be bench-
mark:

1. SPECviewperf 11: http://www.spec.org/

2. Cadalyst c2012 AutoCAD: http://www.cadalyst.com/benchmark-test

3. PPBM5 test for Adobe Premiere Pro CS5.5: http://ppbm5.com/

More details will be discuss when each comes to the real testing.

http://www.asus.com/Motherboards/Intel_Socket_2011/P9X79/#overview
http://www.asus.com/Motherboards/Intel_Socket_2011/P9X79/#overview
http://ark.intel.com/products/63697/Intel-Core-i7-3930K-Processor-12M-Cache-up-to-3_80-GHz
http://ark.intel.com/products/63697/Intel-Core-i7-3930K-Processor-12M-Cache-up-to-3_80-GHz
http://www.spec.org/
http://www.cadalyst.com/benchmark-test
http://ppbm5.com/

Chapter 3

Benchmarking

3.1 SPECviewperf 11

The first phase of testing was done using SPECviewperf 11 from the Standard Per-
formance Evaluation Corporation. SPECviewperf is a benchmarking application
that uses viewsets from various CAD applications such as Autodesk Maya, Solid-
Works and Siemans NX to simulate daily CAD usage. Since testing began I have
found that SPECviewperf is designed to isolate the graphics subsystem and is only
reliable for comparing graphics cards and not other system components such as
CPU and memory. I have since found other applications to test overall system per-
formance for CAD work (see next section). SPECviewperf is still useful for compar-
ing different graphics cards, the following configurations were tested and the results
are below:

• Xeon x5506 / 6GB DDR3-1333 / Quadro 600

• Xeon x5506 / 6GB DDR3-1333 / Quadro 2000

• Xeon x5506 / 6GB DDR3-1333 / GeForce GTS 450

• Intel i7-3930K LGA2011 / 8GB DDR3-1333 / Quadro 2000 (our system)

The GTS 450 card was used as a comparison as it is the closest specced desktop
card to the Quadro 2000 (they have the same number of active CUDA cores and
the same amount of memory). Results are also included for the Quadro 600 card:
this is the cheapest Quadro Fermi card available, it has 96 CUDA cores and 1GB
memory. Testing was done at 1280x960 resolution with 8x multi-sampling enabled
in the benchmark application.

As expected(shown in Figure 3.1), the type of graphics card used greatly affected
the benchmark score. The Quadro 2000 card received benchmarking scores up to al-
most 20x better than the GeForce card. There is, however, an outlier in this situation:
EnSight gained a performance increase when using the GeForce card; from this we
can conclude that it is not optimized for use with the Quadro model card and relies
on raw performance which the GeForce has more of.

12 3. Benchmarking

Figure 3.1: Results

As a new configuration is added: Intel i7-3930K LGA2011 / 8GB DDR3-1333 /
Quadro 2000

So a new Testing was done again at 1280x1024 resolution with 8x multi-sampling
by me (HaoYu), another testing was done at 1024x768 resolution with 8x multi-
sampling by Celestino.

The following things need to be aware:

Different resolution and muli-sampling was using since the SPECviewperf 11
that we installed did not include 1280x968 resolution which Joseph has done previ-
ously. I decided to choose 1280x1024 resolution that it is the closest value.

Different configuration was used for this test, a better CPU core and 2GB mem-
ory higher than before.

From the previous test, Joseph has mentioned that he have found SPECviewperf
is designed to isolate the graphics subsystem and is only reliable for comparing
graphics cards and not other system components such as CPU and memory. If he is
right, the new configuration of Intel i7-3930K LGA2011 / 8GB DDR3-1333 / Quadro
2000 compares with Xeon x5506 / 6GB DDR3-1333 / Quadro 2000 should come out
with a similar score, else we should expect a higher score.

The result is shown below on Figure (3.2):

A interesting result has came out, The color marked in green represents a higher
score than before, the color marked in purple means a lower score. A significant

3.1. SPECviewperf 11 13

Figure 3.2: SPECviewperf 11 results

decreasing performance score for “May”, it dropped from 26.07 to 15.57, which it
shouldn’t be the case for a system with better hardware.

As we all known that SPECviewperf 11 is a 3rd party benchmarking software,
this will lead to us some bias in some situations. Bias is always a concern with
testing.

In this case, we have concluded our first hypothesis of bias that it might causes
this result, since the new configuration was using a brand new mother board Asus
P9X79 with the newest CPU chipset LGA 2011, these hardware are only released
about few months ago, the SPECviewperf 11 may has not updated to the newest
version that support our hardware.

14 3. Benchmarking

3.2 Cadalyst c2012 Auto-CAD

The next phase of testing was done using the Cadalyst benchmark test for Auto-
CAD 2012. This is not an independent application like SPECviewperf and is instead
run from inside a fully installed version of Auto-CAD. This way it is mimicking ac-
tual CAD usage in a proper CAD application and should give us the most consistent
and realistic benchmark we can hope for. A 30 day trial of AutoCAD 2012 was used
as it is compatible with this test.

There have been some instabilities experienced when running this benchmark,
this would be due to the fact that it is a 3rd party benchmarking test. The first
group of tests was done using the base Quadro driver supported by Auto-CAD;
the second group was done with the additional Auto-CAD performance driver by
Nvidia installed and there was a large increase in 3D rendering performance. The
following systems (Figure (3.3)) were tested:

Figure 3.3: Testing systems

The majority of the price different comes from the CPU and motherboard used.
Do not use these to calculate the price increase (e.g. 300% cost increase) as the cost of
parts such as the PSU, chassis and more expensive storage solutions aren’t factored
in and these would change the final cost ratio.

The tests were performed on newly installed operating systems using the sys-
tem configuration recommended by the Cadalyst benchmark as well as installing
a tweak to remove the info center from Auto-CAD (this sub-application appears to
have been adding to the instability during testing). The testing was performed at
1024x768 instead of the suggested resolution of 1280x1024 because the higher reso-
lution was also causing instability during testing.

I have made a new table for comparing previous tests done by Joseph with my
current tests:

Testing was done using the Cadalyst benchmark test for Auto-CAD 2012 instead
of Auto-CAD 2011.

3.2. Cadalyst c2012 Auto-CAD 15

Figure 3.4: Joseph’s result

The first group of tests were done using the base Quadro driver supported by
Auto-CAD where we called it a“Bas” testing; the second group called “Performance”
testing was done with the additional Auto-CAD performance driver by Nvidia.

*Note: the result is tested by two different Driver versions, for instance: (8.17.12.9573)
vs (8.17.12.6570)

Figure 3.5: New result

After the first group of tests was done by using the base Quadro driver, then
lately we found out that testing with performance drive is unable if we continue
using Auto-CAD 2012. Since Nvidia currently does not support performance drive
for Auto-CAD 2012.

The link is shown here:
http://www.nvidia.com/object/AutoCAD_PD_workstation.html

We suspect that Nvidia has hidden the drivers for AutoCAD 2012 this time.
When Joseph found the drivers for AutoCAD 2011, Joseph did note that the driver
was hidden somewhere on the Nvidia website.

Similar scores where gained despite the varying system components, with the
least expensive system performing fractionally better (due to the new architecture).

http://www.nvidia.com/object/AutoCAD_PD_workstation.html

16 3. Benchmarking

The performance driver results in a 3D performance increase of over 400%. Please
note, however, that the performance driver has the following limitation with Auto
CAD 2011:

• The “Advanced Material Effect” option introduced with AutoCAD 2011 is not
currently supported by the NVIDIA AutoCAD Performance Driver. The set-
ting controlling this graphics mode (in the Manual Performance Tuning dia-
log accessed by the GraphicsConfig command) is grayed-out when the Perfor-
mance Driver is active.

• Procedural Materials and Maps introduced with AutoCAD 2011 will only dis-
play with the material’s diffuse colour.

• Materials and Maps used in drawings coming from earlier AutoCAD versions
are supported as they would have displayed in AutoCAD 2010.

3.3. PPBM5 17

3.3 PPBM5

The next phase of testing was done using the Premiere Pro Benchmark 5 (PPBM5) for
Adobe Premiere Pro CS5.5. Since one of our goal is to test out Maximus functionality
(Quadro combines Tesla) that whether it can provide a cost effective configuration,
and previously, the two tests that done by both SPECviewperf 11 and AutoCAD
2012 did not have the feature to support Maximus technology [10].

Complete directions are included in the ZIP file downloaded from the web-
site. Create a directory called PPBM on your Premiere project disk and download
the PPBM5 file and unzip it in that directory. The zip file also includes a tim-
ing/information gathering script which writes the Output.txt file.

There are four tests in PPBM5:

1. Render the Time-line to create Preview files (Pressing Enter). This test may
have to be done twice, once with Hardware MPE acceleration and once with
Software MPE only.

2. Export the Time-line with Abode Media Encoder to a MPEG2 DVD file.

3. Export the Time-line with Adobe Media Encoder to a H.264 file.

4. Export the Time-line with Adobe Media Encoder to a Microsoft DV AVI file

DISK I/O test:

The overriding factor is disk speed here. The test uses many small reads and a
large sequential write (nearly 13 GB). Number of cores makes no real difference (it
is not well multi-threaded), but clock speed does.

MPEG2 DVD test:

The two overriding factors here are amount of memory and number of cores. More
is better here. Additionally the location and speed of the page-file can be important
especially if you have a small amount of RAM.

H.264 test:

Here the speed of CPU/RAM communication is king. Number of cores, clock
speed and the amount of CPU cache are very important. Dual processor systems
are hampered by the 2 chip communication.

CPU / GPU Test Result:

This is almost solely based on the video card and whether hardware or software
MPE is used.

MPE Gain:

18 3. Benchmarking

This shows how much faster hardware MPE rendering is than software only
rendering. The minimum score is of course 1, since if there is no hardware MPE
available, there is no performance gain.

Total Time:

The Total Time is the sum total of the individual test scores, where each test score is
calculated by seconds, so the lower the score the better.

Below are the results for benchmarking PPBM5 by using two different
configurations:

1. Intel i7-3930K LGA2011 / 8GB DDR3-1333 / Quadro 2000 only

2. Intel i7-3930K LGA2011 / 8GB DDR3-1333 / Quadro 2000 + Tesla C2075 (Max-
imus technology)

The two tables shown below are the time taken for running the test; it is the score
for each test and the time is measured in sec.

Figure 3.6: Upper table is tested with Quadro 2000; the bottom one is Q+T)

Remember these are the scores for each test from Output.txt file (Figure 3.7): and
each test have to be done twice, once with Hardware MPE acceleration(MPE-On)
and once with Software MPE only(MPE-Off). Hardware acceleration is useful with
rendering, previewing, and on certain parts of the export process, i.e. scaling, frame
rate adjustments, blurring and blending, but not with encoding.

Our result for Quadro + Tesla(MPE-ON): Total scores = 359+140+62+8 = 569 it
is still so high because of the HDD(Disk IO score) that we used was an old one
from TSD. Our MPEG2-DVD(we got 140) is also quite high which I do not quite
understand at the beginning. But after i did some research on the website, I found

3.3. PPBM5 19

Figure 3.7: Mercury On/Off

out that the score is affected by the amount of memory. See the diagram I attached
below:

Figure 3.8: Encoding times with diff range of RAM

Resource from: http://ppbm5.com/DB-PPBM5-1.php

http://ppbm5.com/DB-PPBM5-1.php

20 3. Benchmarking

Figure 3.9: Top 20 scores on 30/06/2012

As we can see from the top 20 results, they all had a very high amount of RAM,
especially for the ranking No.1, it has number of 48 RAM for the configuration. For
our set up, we had only 8GB RAM.

And for the GPU card GTX580, it has 512 CUDA cores comparing with our
Quadro 2000 that contains only 192 CUDA cores. If we look further for Maximus,
Quadro 2000 combines with Tesla C2075 with 448 CUDA cores. We should expect
a high improvement result by using Maximus functionality. But in fact, our result
comes out with not much improve overall even though our H.264 score and MPE-
On score are actually very close to the top 20 result.

So after we have compared our results with the Top 20 scores, we decided to in-
crease our 8GB RAM to 16GB RAM and test again by using exactly the same config-
uration. Hopefully, we should expect a better result related to MPEG2-DVD score.

**Important Note:
This test was still using the old/same Hard disk drive Model: Seagate Barracuda

7200.7 ST3120827AS 120GB 7200 RPM 8MB Cache SATA 1.5Gb/s 3.5” Hard Drive
Why this need to be pay a special attention? I will talk about this later after we

had another tests on a New Hard disk drive Model.

Now, let’s check the table, it shows the fact that no matter how we changed the

3.3. PPBM5 21

Figure 3.10: RAM increased from 8GB to 16GB

Memory RAM does not give any improvement to our scores. Hence, we did not
continues on testing with Quadro2000 + TeslaC2075, it is meaningless for doing it
since RAM does not apply better result. So we had one conclusion by now:

• Even though Adobe PPBM5 explained/proved that higher Memory RAM will
increase performance, it does not work for our configuration with Quadro2000
graphics card.

We don’t think we can expect much from them given that they are third-party
solutions. After we contacted with Joseph, he then gave us some suggestions:

• one possible solution to the issue would be to bypass the benchmarks and test
the performance manually. Possibly you could find a few common tasks with
the application you wish to benchmark (rendering a model in AutoCAD for
example) and them manually running the task and timing how long it takes
to finish. This way you get a ’real world’ performance result (i.e. instead of
saying ”it received a benchmark score of 398” which is abstract, you could say
”it rendered the model 20 seconds faster” or ”it took half as long to encode a
20 minute video”. The problem with that I guess would be that you would
wouldn’t be able to compare it with scores online and would have to run the
tests on older system setups to compare performance differences.

Next step we are trying to improve the performance for Disk I/O, as i mentioned
previously about OLD hard disk, now we changed to new Model:

• Western Digital Caviar Blue WD5000AAKX 500GB 7200 RPM 16MB Cache
SATA 6.0Gb/s 3.5” Internal Hard Drive

22 3. Benchmarking

Figure 3.11: New Hard-disk’s scores

This time has successfully improved the score of Disk I/O as expected, reducing
the time from 340-360 sec to 133 sec, which leads to our second conclusion:

• Disk I/O is working perfectly fine with our configuration, better the Hard
disk, better the result.

3.3. PPBM5 23

The next phase of testing was done using Tesla C2075 alone, Quadro 600 alone
and Maximus(TeslaC2075 + Quadro 600) with different range of RAM.

*Note: Both Tesla C2075 and Quadro 600 do not support Mercury Playback en-
gine.

However, Maximus enables MPE on (if we combined Tesla with Quadro).

Explanation of MPE from Adobe website:

‘Mercury Playback Engine’ is a name for a large number of performance im-
provements in any version above Premiere Pro CS5. Those improvements include
the following:

• 64-bit application

• Multi-threaded application

• Processing of some thins using CUDA

Everyone who has Premiere Pro CS5 has the first two of these. Only the third
one depends on having a specific graphics card.

Confusingly—because of one of our own early tests that was just plain unclear—
a lot of people think that ‘Mercury’ just refers to CUDA processing. This is wrong.
To see that this was not the original intent, you need look no further than the project
settings UI strings ’Mercury Playback Engine GPU Acceleration’ and ’Mercury Play-
back Engine Software Only, which would make no sense if ‘Mercury’ meant “hard-
ware” (i.e., CUDA).

The official and up-to-date list of the cards that provide the CUDA processing
features is here:

http://www.adobe.com/products/premiere/systemreqs/

As long as MPE is on, the results always come out around 10 sec, which it is an
acceptable score.

With the new Hard disk, our 1st conclusion still apply to the Quadro 2000 card,
RAM does not improve at all, in real, it should not be the case, because Memory
RAM does effect both Tesla C2075 and Quadro 600 as we can see the following
table:

*Note: The following table is MPE-OFF, since Tesla C2075 and Quadro 600 do
not respond to MPE.

Tesla C2075 with 16GB RAM reduced the time from 105sec to 54 sec. Same effect
apply to Quadro 600 even though we did not test Quadro 600 with 8GB RAM, but
the data shows a fact that 16GB RAM working perfectly fine with Quadro 600, and
leads to a result better than Tesla C2075 (41sec < 54sec).

http://www.adobe.com/products/premiere/systemreqs/

24 3. Benchmarking

Figure 3.12: Q600 is added to the test configuration

Figure 3.13: MPE-Off

This draws us to a deep thinking of why will Quadro 2000 perform lower score
regarding to Quadro 600 if we do not consider the special feature MPE-On/Off.
This could be the reasons where graphics card’s driver version or 3rd party solution.
Recently, Adobe official announces Adobe Premiere Pro CS6 is released, this could
be more reliable and accuracy for testing Quadro2000 and Maximus functionality.

A Quadro 6000 and Tesla C2075 are not identical but they are very similar and
you can expect similar performance. There are a few reasons you might want to use
a Maximus configuration for Premiere Pro rather than a single Quadro 6000:

3.3. PPBM5 25

1. Having both a Quadro and Tesla GPU in the system means when the Tesla is
cranking full-out on Mercury Playback Engine and the Quadro is unaffected,
so you can, say, open After Effects or other application that may take advan-
tage of the Quadro, and system performance on that app will be better than if
it was competing for resources with MPE on a single GPU.

2. In the future, we expect many users will want to run an animation application
(using the Quadro) and a simulation application (on the Tesla) at the same time
to provide animators with a level of interactivity they don’t have without Max-
imus technology. Example video is here. http://youtu.be/_LagqqsVO28

3. It costs less. A typical Maximus configuration has a mid-range Quadro (e.g.
a Quadro 2000) and a Tesla C2075, which in that instance costs hundreds of
dollars less than a single Quadro 6000 and offers similar performance plus the
workflow advantage listed above.Of course, some users may want to run a
Quadro 6000 and a Tesla C2075 and get maximum performance, but others
can actually get the best MPE acceleration for less money with Maximus tech-
nology. (Resource from Adobe forums)

Maximus is a technology that essentially marries a graphics-intensive Quadro
card with a Tesla card, which is all compute, inside a workstation to meet that chal-
lenge. Theres also a software stack at the driver level that allocates the code within
any application you’re using to CUDA, routing it over to Tesla to handle the com-
pute processing and the Quadro to handle graphics.

Sum up all the conclusions so far:

1. Even though Adobe PPBM5 explained/proved that higher Memory RAM will
increase performance, it does not work for our configuration with Quadro2000
graphics card.

2. Disk I/O is working perfectly fine with our configuration, better the Hard
disk, better the result.

3. Maximus feature: (Q2000 + C2075) vs (Q600 + C2075), result came out as Q600
+ C2075 is better.

Most of the COTS tools we have benchmarked were not Open sources that we
cannot investigate deeper into the concept for CUDA computing, thus there are
some bias exist.

For next step, we would like to have our own experience of applying CUDA to
speed up Semi-global matching (SGM), and the comparison could also be drawn
with SGM on normal CPU.

http://youtu.be/_LagqqsVO28

Chapter 4

SGM

4.1 Review

Stereo vision has been an intensive research area in the last decades. The solution
proposed was originally split into two main categories, local and global methods.
Later a third category was introduced by Hirschmüller to separate the algorithms
from the global methods [5]. The author has published a more detailed paper [6]. As
this third category called Semi-global matching/method which are based on global
optimizations, but the computational complexity is reduced to allow real-time im-
plementations.

Local methods use a finite support region around each point/pixel to calculate
the disparities. For selecting the appropriate disparity for each pixel, we applied the
“winner takes it all” that the minimum of the calculated matching costs is searched.
The main advantage of local method is the small computations. The main disadvan-
tage is that only local information is used. As these methods are not able to handle
featureless regions or repetitive patterns.

Global methods are able to improve the quality of the disparity map by enforcing
several global constraints in the disparity selection step. Although results show a
improvement in the disparity map quality, the disadvantage is still obviously as
those methods are not suitable or desirable for real-time applications [8].

4.2 Semi-global Matching

Hirschmüller’s original Semi Global Matching algorithm uses a mutual information
based pixel matching cost and aggregates matching costs in multiple directions, for
instance, 8 or 16 directions. SGM finds a minimum cost along a column of all possi-
ble disparity levels. In contrast to traditional implementation, the cost function was
based on mutual information. But in our implementation, we prefer a simple sum
of absolute difference (SAD) cost function. At last, we limited the direction along
which we accumulate cost to only one at the beginning since it is easier when it
comes to real CUDA implementation.

28 4. SGM

4.2.1 Correspondence Problem

Now let’s look at the basic algorithm that we used for our correspondence problem.
The approach is called Correlation-Based Methods. It compares a window of pixels
in one image with a window of pixels in the other. We assumed rectified images in
canonical configuration and epipolar lines aligned with scan lines.

See Cost function in Equation (4.1).

f(I1(x, y), I2(x− d, y)) = |I1(x, y)− I2(x− d, y)| (4.1)

Now if a rectified pair of stereo images, called Left image I1 and Right image I2.
The simplest form is to calculate the absolute difference, for each pixel, at coordinate
I1(x, y), Right image will compares to Left image at a disparity range d which the
pixel at I2(x− d, y).

See the example in Figure (4.1)

Figure 4.1: Rectified stereo image pair from [Klette, Schlüns, Koschan 1998]

Pixel p (in the left image) is on one side of a block, and the corresponding point
q (in the right image) is what we want. For minimizing the sum in Equation (4.1),
we may apply the following simple matching strategy for p = (x, y) in I1:

Initialize d = dmin = 0 and Dmin = |I1(x, y) − I2(x, y)|. While d<x increase d by
one, calculate D = |I1(x, y) − I2(x − d, y)| , and, if D<Dmin, replace dmin by d and
Dmin by D.

Hence, the corresponding point q with the same (or most similar) pixel value
along the epipolar line (defined by p) will define the disparity: ”the winner takes it
all”.

4.2. Semi-global Matching 29

*Notes: This total independence of decisions at every pixel will create artefacts
(noisy depth maps).

The simplest form may cause incorrect matching as a pixel may has lower value
than the real correspondence pixel, therefore a window of pixels around (x,y) will
be considered. e.g. a 3x3 window size around pixel p at (x,y).

Now we compared a region of 3x3 window size of pixels instead of one pixel,
the Equation (4.1) has slightly changed to the following:

f(I1(x, y), I2(x− d, y)) =
∑

−w≤p≤+w
−w≤q≤+w

|I1(x+ p, y + q)− I2(x− d+ p, y + q)|

As w is the window size.
The success of correlation-based methods depends on whether the image win-

dow in one image exhibits a distinctive structure that occurs infrequently in the
search region of the other image.

How to choose the size of the window, w?

• too small a window

- may not capture enough image structure and

- may be too noise sensitive

- many false matches
• too large a window

- makes matching less sensitive to noise but also

- decrease precision (blurs disparity map)

For our implementation, we have used three different window sizes. such as
3x3, 5x5 and 7x7. The final algorithm is shown on Figured (4.2):

Figure 4.2: Correlation-Based Methods

30 4. SGM

4.2.2 Aggregation of Pixelwise Matching Costs

Of course, individual pixels do not contain enough information for unique match-
ing. Therefore, global methods additionally use a smoothness constraint that penal-
izes discontinuities. This is typically formulated in a cost function:

E(D) =
∑
p

(C(p,Dp) +
∑
q∈Np

P1T [|Dp −Dq| = 1]

+
∑
q∈Np

P2T [|Dp −Dq| > 1]) (4.2)

The first term sums the pixel-wise matching costs for all pixels. The second term
penalizes small discontinuities with a penalty P1, while the third term penalizes all
larger discontinuities with a penalty P2. D is the set of disparities, C is the cost
function and Np is the neighborhood of the point p in all directions. The function T
returns the value of true or false.

The Semi global matching algorithm approximates the minimum of a 2D energy
function (Equation 4.2) by minimizing multiple one-dimensional paths. The costs
Lr are summed over paths in all direction r, The number of paths should be 8 or 16
for being sufficient. For each linear cost/path is aggregated over all pixels from each
staring point p0 (border pixel) to the opposite image border. And the computation
is carried out recursively as shown in the following Equation:

Lr(p, d) = C(p, d) +min(Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

miniLr(p− r, i) + P2)−miniLr(p− r, i) (4.3)

The pixelwise matching cost C will be our SAD cost for each pixel p at disparity
d. The costs of paths Lr, for all (say, 16) directions r, are accumulated at a pixel p,
for all disparities d with 0 ≤ d ≤ dmax, and the disparity d with the lowest cost is
finally selected.

The path costs for one pixel in one path direction are dependent only on the path
costs of the predecessor pixel in each direction (p − r), not costs of the neighboring
pixels perpendicular to the path.

For penalty P1 and penalty P2 in our implementation, we have chosen P1 = 20

and P2 = 100 respectively.

4.3. GPU Implementation of SGM 31

Figure 4.3: 16-Path SGM

*Note: The value of P2 should higher than P1.

For the next section, we will start looking at the CUDA implementation, the
implementation on GPU is already published by many other people [3, 7, 15, 16].
The primary goal of each paper is to be very fast, it is the same as our goal. Some
of them also want a secondary goal of being fairly flexible to allow changing of
parameters for different stereo algorithms/methods

4.3 GPU Implementation of SGM

4.3.1 CUDA Programming Model

Stereo Imaging is a powerful yet seldom utilized technique for determining the dis-
tance to objects using a pair of camera spaced apart. A pair of cameras is spaced
apart at roughly the same spacing as human eyes. This is the same visual system
used by humans and most other animals. But as we know, the extremely high com-
putational requirements of stereo vision limit the application to non-real time or
to applications where high computational power is needed. Hence, a fine-grained,
data-parallel threads provided by CUDA can achieve this.

In CUDA, it launched a ”grid” of ”blocks” of ”threads” onto a GPU as shown in
Figure (4.4)

At the top level of the hierarchy, a grid is organized as a two dimensional array
of blocks. The number of blocks for each dimension is specified by the first param-
eter given at the kernel launch (e.g. methodName〈〈〈N, 1〉〉〉 where N is number of
Blocks), with gridDim.x specifying the number of blocks in the x dimension and
gridDim.y the y dimension. The values of gridDim.x and gridDim.y should be be-
tween 1 and 65536. All threads in a block share the same blockId number. Each block

32 4. SGM

Figure 4.4: CUDA Model

in the array is labeled with (blockId.x, blockId.y). From the Figure (4.4), Block(1,1)
has its blockId.x = 1 and blockId.y = 1. And this is the same principle applies to
threadId.x and threadId.y.

Each thread that executes the kernel is given a unique thread ID that is ac-
cessible within the kernel through the built-in threadIdx variable. threadIdx is a
3-component vector, so the threads can be identified using one-dimensional, two-
dimensional, or three-dimensional thread index. This provides a better way to in-
voke computation across the elements in a domain such as a vector, matrix, or vol-
ume, and also good for our image processing.

Let us consider a simple example as shown on Figure (4.5):

We assumed that there is a total number of 16 elements need to be executed, and
for our example, we had blockDim = 4 which it is 4 blocks. Inside each block, it

4.3. GPU Implementation of SGM 33

Figure 4.5: A simple example

contains 4 threads, and the index is threadIdx.x = 0, 1, 2, 3. But in actual CUDA
implementation, the global index should be “idx” as marked in orange color in the
figure. And thus, a common pattern is used for the correct idx:

int idx = blockDim.x * blockId.x + threadIdx.x

*Note: blockDim should be ≥ 32 in real code, it is just a example

There is a limit to the number of threads per block, since all threads of a block are
expected to reside on the same processor core and must share the limited memory
resources of that core. On current GPUs, a thread block may contain up to 512
threads.

CUDA allows threads in the same block to coordinate their activities using a
barrier synchronization function syncthreads(). When a kernel function calls sync-
threads(), all threads in a block will be held at the calling location until everyone
else in the block reaches the location. This ensures that all threads in a block have
completed a phase of their execution of the kernel before they all move on to the
next phase.

4.3.2 Heterogeneous Programming

In CUDA, CPU and GPU are separate devices with separate DRAMs, one of the
main goal is to enable heterogeneous systems(i.e., CPU + GPU). So the idea is di-
vided the code into two parts, Serial code executes in a host thread (i.e. CPU thread)
and Parallel kernel code executes in many device threads across multiple process-
ing elements (i.e. GPU threads). And this can be illustrated from Figure (4.6):

Kernels can only operate in device memory, so the CUDA library provides func-
tions to allocate, de-allocate, and copy device memory, as well as transfer data be-
tween host memory and device memory.

For instance, Device memory management has the following library:

34 4. SGM

Figure 4.6: Heterogeneous Programming

cudaMalloc(), cudaFree(), cudaMemcpy()

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost

Memory is typically allocated using cudaMalloc() and freed using cudaFree()

and data transfer between host memory and device memory are typically done us-
ing cudaMemcpy(). as cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost

indicate the type of transaction.

For our implementation:

Firstly, we declared two char pointer variables called ‘readLeft′ and ‘readRight′

for reading the data from two images resources ‘left-image.pgm’ and ’right-image.pgm’;
as the image is stored using .pgm format type. Hence, a further method called read()

is required to correctly allocate the memory into host; and it is stored in two new
unsigned char pointer variables ‘left image′ and ‘right image′.

Next, we need to allocate the same amount of memory onto GPU, in order to
do this, we are required to know the size of the image which it is the imageWidth *
imageHeight, as well as the amount of bytes for each pixel. The simple code creates
a integer variable called ‘size′ to store the size of memory as sizeof(unsigned char)∗

4.3. GPU Implementation of SGM 35

imageWidth ∗ imageHeight.

Then, two new char pointer variables called ‘d left image′ and ‘d right image′

are declared for device. By using the CUDA library function cudaMalloc to allocate
the required memory space on the device (GPU).

When both host memory and device memory have correctly allocated, then it
is time to copy the data from host to device by calling the function cudaMemcpy().
There are 4 parameters in the function method, first is the destination for device
memory, second is the source for host memory, third is the total size, and last is the
type of transaction which it is host to device in this example.

Finally, the method of SGM can run parallel on GPU with multiply threads
within multiply blocks. cudaThreadSynchronize() ensures that all threads synchro-
nized correctly. After the execution of SGM, remember to copy the data from device
memory back to host memory by using cudaMemcpy() again.

Inside the method of SGM, we used the common pattern formula to get the cor-
rect thread’s ID:

Since we stored the all image pixels into one-dimensional array, the coordinate
for x and y is shown above.

36 4. SGM

The following is part of the code for SGM, the idea was for each pixel, which it
height × width, and for each disparity range from 0 to 50. We compute the SGM
function from Equation (4.3); see Figure 4.7.

Figure 4.7: Semi-global method.

As the cost is the first term of the function,the second term of the function is
matched to L0, L1, L2 and L3 respectively, and the third term is min Cost. We ag-
gregated over the minimum 1D cost along one direction Lr from left image border
to the end of right image border.

4.4. Results 37

4.4 Results

4.4.1 Matching Accuracy

In this section, we compare and analyze computing performance and matching ac-
curacy of Semi-global matching algorithms on a GPU card (Nvidia GeForce 8400
GS). And the result is compared with CPU running serially (Quad CPU Q6600 2.40
Ghz).

Figure 4.8: Results (bottom left is SAD and bottom right is SGM)

One of the testing result is shown on Figure (4.8), the original two image is taken
by two cameras. As shown in the first row, left and right image are compared with
each other using SAD (sum of absolute difference) first, then it uses the SAD cost
and carries on the computation recursively with SGM algorithm (Equation 4.3 as
described previously).

The image size for Figure (4.8) is width 1252 x height 1110. The disparity range
that we tested from 0 to 50, and the size of SAD window is 3x3 for this example.

The bottom left result is SAD, the result is suffered from many “Peaks”, “Noise”
and some area of untextured background. So the resulting disparity image still con-
tains certain kinds of errors. there are generally ares of invalid values that required
us to be fixed. If we increase the size of SAD window (e.g. 5x5, 7x7), the result for
SAD can slightly improve the result; as the next result that shown on the next page.

38 4. SGM

Now it comes to the SGM, which it is the bottom right image, we can noticed that
there is a significant improvement. But it still does not prove to be accurate enough,
one of the reason is that number of path for Lr is limited to one path at this stage.

For different block size of windows, such as 3x3, 5x5 and 7x7, the results are in
second row, third row and fourth row respectively. The image size is width 450 x
height 375. Same disparity range as 50.

Figure 4.9: Results (3x3 and 5x5 SAD, 3x3 and 5x5 SGM)

In this example, the best result is given by 5x5 window size, for the last row
of 7x7 block size, image processing with SAD perform better result than 5x5 block
size SAD, but this does not apply to SGM, many outliers (“Peaks” and “Nosie”)
appeared in the image. Therefore, further disparity refinement for removing ‘Peaks’
is needed. This will be discuss more in the Conclusion and Future work section.

4.4. Results 39

4.4.2 Performance Evaluation

The execution time is scaled linear with the size of window as well as the disparity
range, and with the number of pixels in an image. In both tables (Figure 4.10 and
Figure 4.11), we used the same image size of width 450 x height 375, but testing is
done with different SAD window sizes and disparity ranges. The configuration of
this testing system is not in a good condition, since the CPU is Quad Q6600 2.40Ghz
and the GPU card is Nvidia GeForece 8400 GS with only 8 CUDA cores.

The reason is because the implementation of the SGM is still under development,
it is considered as a testing stage which I did not think it is ready enough to test
with powerful GPU cards in Chapter 3 (e.g. Quadro 2000 and Tesla C2075), those
GPUs can certainly tune to produce higher performance. But without performing
their maximum capability. If it is not running with its best capability, then it is
meaningless to do so.

Even though the GPU card we currently using is poor condition, the execution
time still gives a 2x faster than normal CPU. As mentioned before, it scaled linear
with increase of size, it is clearly shown from the graph which blue color indicates
CPU and red color represents Nvidia’s GPU.

Figure 4.10: Running time for different block sizes

40 4. SGM

Figure 4.11: Running time for different disparity ranges

*Note: More pair of images data should be tested along with different combina-
tions of SAD window size and disparity range.

Chapter 5

Knowledge Gained

5.1 Achievements

5.1.1 Project Goal

Most of the goals for this project have been accomplished. The project involved
many technologies and algorithms, A lot of research is done in order to gain a fully
understanding for each concept. And it is great to know a range of new ideas and
concepts. One of the goals for myself is to find out certain areas where I was lacking,
and then develops the skills that will be beneficial for me in the future.

5.1.2 CUDA Language

From this project, I have learned C++ programming language with CUDA exten-
sions to express parallelism, data locality and thread cooperations. Using CUDA,
it allows the latest Nvidia GPUs become accessible for computation like CPUs. We
also found out that CUDA is compatible with most standard operating system, it
is suitable to use for a range of different environments. And we understood that
it is possible to solve general purpose problems on GPUs, but unlike CPUs, GPUs
have a parallel throughput architecture that emphasizes executing many concurrent
threads slowly, rather than executing s single thread very quickly. However, we also
known that CUDA still has many limitations, such as memory allocation between
host an device may incur a performance hit due to latency. For a better result, it is
necessary to understand the shortages/limitations of CUDA. Learning CUDA lan-
guage is a great experience for me as it will be very useful for me in the future.

5.1.3 Presentation and Report Skills

This whole year-long project includes three seminars(Introduction seminar, End of
semester one seminar and Final seminar) and two reports (End of semester one re-
port and Final report). Working on this project definitely improved my presentation
skills also report writing skills. After each seminar or report, feedbacks are given by

42 5. Knowledge Gained

Dr. S. Manoharan and Prof. Reinhard Klette, as well as TN Chan, those feedbacks
are valuable to me as it indicates my weakness and shortcomings.

5.1.4 Organisation and Time Management Skills

During the semester, along with other courses that have assignment, seminars and
reports. It meant that I really need to manage myself in a scheduled time-frame.
Weekly or Monthly meeting with the industrial mentor TN Chan and academic
mentor Prof. Reinhard Klette made the project up to date as well as planning the
next week/month’s work. It does improve a lot for my time management skills.

5.1.5 Working Experience

As an great opportunity to work in the industry/company like Compucon New
Zealand (CNZ). I have met many smart people, especially engineering specialist
in the area of hardware, they guided me well for this project. I was involved as
part of the member of CNZ, this helps me to develop experiences for working with
others. Taking responsibility for my work is a very important thing. In the future,
I might involve in the similar situation as working in a company. Also the ideas
for commercial objectives, it enables me to understand the goals/achievements that
industry is aiming for.

5.1.6 Planning Solutions

The progress is slow at the beginning of the second semester due to the implemen-
tation of SGM on CPU, it hold me back again when it comes to real CUDA. The
problems throughout the project included both technical and non-technical issues.
So it is a important thing for planning a solution. It may good to separate or break
the project into smaller tasks, since it made us more easier to find out the problems,
and if one solution failed, do what was needed or try another solution for that part
without affecting other parts of the task.

Chapter 6

Conclusion and Future work

6.1 Summary

Modern graphics processing units (GPU) are usable as high-speed co-processors for
general purpose computational tasks. And CUDA is the tool for this project. The
first half of the project has successfully benchmarked using many well-known soft-
ware such as SPECviewperf 11, Cadalyst c2012 Auto-CAD and PPBM5, etc. While
testing those high-end GPU cards, we can discover the limitation and behavior of
them. This helps us when it comes to the second phase of the project, which it is
Semi-global matching on CUDA.

Fast stereo matching is necessary for many practical real-time applications. Solu-
tions may be based on local approaches that perform correlation of rectangular win-
dows (our SAD costs), followed by ’the winner takes it all’ disparity selection. The
advantage of correlation methods is fast, but they are known to blur object bound-
aries and remove small structures [8]. Global methods are more accurate than local
methods, but their computational complexity is typically much higher than the com-
putational complexity of local methods, and therefore, it makes them unsuitable for
real-time application.

An exception is the Semi global matching method [6], which combines several
one dimensional optimization from all directions. The computational complexity
is O(width× height× disparityRange) which results in efficient computations and
enough accuracy to compare with global methods. Furthermore, the SGM algorithm
has a regular structure that allows a GPU implementation for this project.

Compute Unified Device Architecture (CUDA) initiative by Nvidia Corporation.
This architecture offers flexible programming with minimal extensions to the com-
mon C programming language, as this can be proved by many related papers or
articles [3, 7, 15, 1]. And we have also implemented it, even though our approach
did not give the best performance.

44 6. Conclusion and Future work

6.2 Conclusion

In this project, we have presented a Semi-global matching algorithm which can be
efficiently mapped to GPU hardware. It means that it is possible to implement SGM
including pixelwise matching with SAD on CUDA. We analysed and compared the
results both from CPU serial and GPU parallel. Whilst this analysis provides a good
guide on performance of CUDA.

For SGM, we reduced the computational complexity of original SGM for the pix-
elwise mutual information to SAD as well as limit the direction to only one path for
testing. The speed of SGM has benefited from CUDA while achieving an acceptable
depth map result. For the term of ‘acceptable result’, it indicated that our solution
currently still lack of quality, further developments are required to maximum qual-
ity and performance.

Overall, we concluded that CUDA offers a flexibility and higher abstraction from
the graphics processing unit (GPU) hardware. It is important to note that this is an
indication only, since for the timing of execution, we are only timing the memory
transfer and computation for SGM, all other factors did not considered. In prac-
tice, there exist certain factors such as costs and power usage. And we have also
deliberately not included any pre- or post-processing and compared the basic SGM
algorithms only.

6.3. Future Work 45

6.3 Future Work

6.3.1 Disparity Refinement

The resulting disparity image can still contains certain kinds of errors. For instance,
some outliers which are completely wrong disparities due to low texture, reflections,
noise, and so forth. They usually show up as small patches of disparity that is very
different to the surrounding disparities, that is, ‘Peaks’. Therefore, these are the area
of invalid values that need to be recovered.

The matching cost calculation step represents the most important part of our
implementation. Both the matching selection and sub-pixel interpolation is based
on the information generated in this step. So if we can use a matching metrics or
by performing a filtering of the input image to enhance the features in order to
help differentiate between the different regions. This will provide a good disparity
refinement that immunity to noise.

The selected matching metric is Census transform [18], this is suggested by Prof.
Reinhard Klette and Ralf Haeusler. Evaluation papers have shown that it represents
one of the best metrics for matching correlation in difficult conditions [9]. In the
future, this should be applying into our SGM.

6.3.2 CUDA Optimizations

As we know, there are many different approaches to implement on the GPU. The
strategy employed in our project is just another follow-up on existing idea and re-
implementing SGM on CUDA to see any potential benefits can be made from it. So
it certainly not guaranteed to be a fast speed approach. There are many guidelines
from Nvidia website or forum for optimizing CUDA.

For implementing the pipeline using the CUDA interface we had to take into
account parallelism possibilities, two levels of parallelism is presented in the CUDA
interface, a coarse level without inter-thread communication and a fine level where
threads can share data. Our implementation cannot use the level of shared memory
yet. To improve performance we definitely require this. One example of stereo
Imaging with CUDA has successfully implemented using shared memory, some
critical guidelines are shown below [17]:

• Avoid obscenely redundant computation – Many computations preformed for
one pixel can also be used by neighbors

• Keep global memory Coalesced

46 6. Conclusion and Future work

• Minimize global memory reads/writes

• Exploit texture hardware (especially for sub-pixel disparity computations)

• Create enough threads and thread blocks to keep the processors busy.

Another issue for our implementation is where to store the image, we stored in a
single one-dimensional array. In comparison with the paper, it used texturing from
a CUDA array which provides the following advantages:

• No coalescence requirements and fast, cached access

• Boundary clamping

• Bilinear interpolation (for sub-pixel disparity measurements)

• Changing image source data type is trivial and does not require re-optimization
of the algorithm

The example in the paper highlights the power of shared memory and data par-
allel programming. It allows a significant amount of data sharing between threads
and thus a dramatic improvement in efficiency. Rather than each thread comput-
ing all the individual SAD values within a kernel the threads cooperate to compute
pieces of the SAD for each other.

Since the approach in the paper is highly optimized, it will be a great guideline
for us to follow in the future.

6.3.3 Optimize SGM on Multiple Paths

Literature notes the SGM algorithm requires a minimum of 8 directions to be used
for optimization, while 16 would be recommended for maximum quality. For our
implementation, it is only one path from left border to the other end (right border).
So the number of errors is quite significant high, but the execution time is small due
to only one path. In order to reduce the computational cost of the algorithm while
performing a good quality result, some papers [3, 4] used 4 directions.

The author evaluated and noted that the best option is to choose 8 directions for
good quality, but instead of choosing 8 directions, they used 4 directions. The reason
is because their results shown an increase of the number of errors to 14% from 12.8%,
but the execution time is significant dropped, for a real-time systems the significant
gain in execution time compensates this small increase in the number of errors. So
in the future, we should continuous our SGM with more paths such as 4 directions,
or more to discover if it matches the findings of the paper as mentioned.

6.3. Future Work 47

6.3.4 More Stereo Vision Algorithms

For this project, we simply implemented SGM only. It will be a great idea for
analysing more stereo vision algorithms on CUDA. In this paper [15], the authors
briefly tested out five different stereo algorithms:

1. Symmetric Dynamic Programming Stereo (SDPS)

2. Semi global matching (SGM)

3. Blocking matching (BM)

4. Belief propagation (BP, OpenCv)

5. Semi global block matching (SGBM, OpenCv)

In the future, if it is possible, our research area should not only about SGM, we
should consider all other algorithms.

Bibliography

[1] Choi, Y., “ CUDA implementation of belief propagation for stereo vision ”,
IEEE Conf. Intelligent Transportation Systems, pp. 1402 - 1407

[2] Guan, S., Klette, R., “Belief-propagation on edge images for stereo analysis of
image sequences”, In Proc. Robot Vision, LNCS, pages 291–302, Springer, 2008

[3] Haller, I.; Nedevschi, S., “GPU optimization of the SGM stereo algorithm”, 2010
IEEEConf. Intelligent Computer Communication and Processing (ICCP), pp.
197 - 202

[4] Hermann, S., Klette, R., Destefanis, E., “Inclusion of a Second-Order Prior into
Semi-global matching”, 3rd Pacific Rim Symposium on Advances in Image and
Video Technology, Lecture Note, vol. 5414, pp. 633-644, 2009.

[5] Hirschmüller, H., Scharstein, D., “Evaluation of cost functions for stereo match-
ing”, IEEE Conf. Computer Vision Pattern Recognition (CVPR), pp. 1-8, 2007.

[6] Hirschmüller, H., “Stereo processing by semi-global matching and mutual in-
formation”, IEEE Trans. Pattern Analysis Machine Intelligence: 328–341, 2008.

[7] Ernst, I., Hirschmüller, H., “Mutual Information based Semi-Global stereo
matching on the GPU”, 4th ISVC08, 1-3 December 2008

[8] Hirschmüller, H., Innocent, P. R., Garibaldi, J., “Real-time correlation-based
stereo vision with reduced border errors”, Int. J. Computer Vision, 47: 229–246,
2002.

[9] Hirschmüller, H., Scharstein, D., “Evaluation of Stereo Matching Costs on Im-
ages with Radiometric Difference”, IEEE Tran. Pattern Analysis Machine Intel-
ligence: 1582-1599, 2009.

50 BIBLIOGRAPHY

[10] Maximus Technology, http://www.nvidia.com/object/maximus.html.

[11] Middlebury Stereo Website: http://vision.middlebury.edu/stereo/. Last visit: 28 Oc-
tober 2012.

[12] NVIDIA: Fermi Architecture for High-Performance Computing,
http://www.nvidia.com/object/fermi-architecture.html.

[13] NVIDIA’s Next Generation CUDA Compute Architecture, http:

//www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf.

[14] NVIDIA Tesla C2074 companion processor calculate results exponentially
faster, http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf.

[15] Kalarot, R., Morris, J., Berry, D., Dunning, J., “Analysis of Real-Time Stereo
Vision Algorithms On GPU”, Control Vision Ltd, Auckland, NZ

[16] Rosenberg, I.D., Davidson, P.L., Muller, C.M.R., Han, J.Y., “Real-time stereo
vision using semi-global matching on programmable graphics hardware”, Int.
Conf. Computer Vision, SIGGRAPH. (2006)

[17] Stam, J., “Stereo Imaging with CUDA”, Nvidia Resource website
http://openvidia.sourceforge.net/index.php/OpenVIDIA.

[18] Zabih, R., Woodfill, J., “Non-parametric local transforms for computing visual
correspondence.”, Computer Vision – ECCV’94 (1994): 151-158.

 http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
 http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
 http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Abstract
	Acknowledgments
	Introduction
	The Project
	Project Goal
	Company Information

	Research
	CPU serial vs CUDA parallel
	Tesla C2075
	Quadro 2000
	Requirements and Set-up
	Configuration of the Test System Model
	Benchmarking Applications

	Benchmarking
	 SPECviewperf 11
	Cadalyst c2012 Auto-CAD
	PPBM5

	SGM
	Review
	Semi-global Matching
	Correspondence Problem
	Aggregation of Pixelwise Matching Costs

	GPU Implementation of SGM
	CUDA Programming Model
	Heterogeneous Programming

	Results
	Matching Accuracy
	Performance Evaluation

	Knowledge Gained
	Achievements
	Project Goal
	CUDA Language
	Presentation and Report Skills
	Organisation and Time Management Skills
	Working Experience
	Planning Solutions

	Conclusion and Future work
	Summary
	Conclusion
	Future Work
	Disparity Refinement
	CUDA Optimizations
	Optimize SGM on Multiple Paths
	More Stereo Vision Algorithms

	Bibliography

